

Assessing and enabling the use of low-cost air pollution sensors in UK urban environments – The QUANT study

Dr Pete Edwards University of York / NCAS pete.edwards@york.ac.uk

Quantification of Utility of Atmospheric Network Technologies

Overarching project aims

- 1. Delivery of a real-world open and fully-traceable assessment of the application of low-cost air pollution sensors and sensor networks in UK urban environments.
- 2. Enhance the value of low-cost sensor data for UK air quality challenges through the development of novel methods that use the unique strengths of these devices.

Transparent assessment of commercial low-cost sensor devices in multiple UK urban environments

- Devices cover a range of technologies and calibration approaches.
- Deployment for > 2 years allows study of seasonal variations and long-term performance.
- Sites include urban background and road-side locations.
- Data analysis approaches being developed to enhance value of low cost sensor date, whilst acknowledging limitations.

WP2 Low-cost sensor network case study

- Tested and validated method for <u>cloud-</u> <u>based calibration</u> of sensor network (gases and PM)- low cost sensors and reference instruments
- New diagnostic approaches <u>using fast-</u> <u>temporal data</u>: source attribution and emission indices (relative to ΔCO₂)
- <u>Assimilation of AQ data</u> to quantify sources and trends (e.g. NO₂ sources due to Covid lockdown in the UK)

WP3

Source apportionment using low-cost sensors

- Can low cost sensors provide pollutant source information?
- Separated and identified the sources and conditions that affected the air quality at a site using data from an Optical Particle Counter.

|--|--|--|

n <mark>pj</mark> climate	e and atmosph	eric science	
Explore content 🗸	About the journal $ \!$	Publish with us $ ightarrow $	

nature > npj climate and atmospheric science > articles > article

Article | Open access | Published: 22 August 2023

Towards comprehensive air quality management using low-cost sensors for pollution source apportionment

Dimitrios Bousiotis, Gordon Allison, David C. S. Beddows, Roy M. Harrison & Francis D. Pope npj Climate and Atmospheric Science 6, Article number: 122 (2023) | Cite this article

Transparent assessment of commercial low-cost sensor devices in multiple UK urban environments

- Commercial sensor units deployed at
 3 locations for 3 years alongside
 research/reference grade instruments.
- 5 different commercial devices being tested
- Multiples (4-6) of each
- Cover range of technologies and calibration approaches
- All data now open access

The benefits of colocation calibrations

"Out-of-box" NO₂ data

The benefits of colocation calibrations

"Out-of-box" NO_2 data

Colocation calibration impact on training data

The benefits of colocation calibrations

"Out-of-box" NO_2 data

Colocation calibration impact on training data

Colocation calibration impact on test data

Impact on sensor location changes

Sensor calibrations can be location dependent

Inter-device precision

- Inter-device precision is how similar data from identical devices is when measuring the same air
- Important to understand if using multiple devices (e.g. network)

- WP1 Do air quality sensors provide an affordable and reliable solution to local air quality monitoring?
 - Low-cost air pollution sensors can provide useful measurements with quantified uncertainties, depending on operation
 - Sensor error characteristics need to be assessed in order to understand data uncertainties
 - Ultimately, end-users need to understand the data needs of the application **before** selecting an appropriate measurement tool
 - Once data requirements and measurement uncertainties are understood, strategies can be implemented to improve performance

Reducing sensor bias – case study

Understanding the nature of the error is key!

 Ozone has a clear seasonal bias component (higher between March – July)

Nitrogen dioxide shows a steadily increasing bias (drift)

Reducing sensor bias – case study

Understanding the nature of the error is key!

- Ozone has a clear seasonal bias component (higher between March – July)
- Nitrogen dioxide shows a steadily increasing bias (drift)
- Can we use a collocated NO₂ diffusion tube to correct this drift?

Reducing sensor bias – case study

Understanding the nature of the error is key!

 Can we use a collocated NO₂ diffusion tube to correct this drift?

Change point detection – case study

Potential sensor use case – NO₂ change point detection

- COVID-19 lockdown
- Data (black) was detrended for weather influence (blue)
- 2 of the 8 NO₂ sensors successfully identified the COVID-19 lockdown, despite only 3 months training data

Summary

- The QUANT project worked to enable LCS use in the UK
- Unique WP1 dataset assessing LCS performance in UK urban environments
- WP2 looking at the power of the network
- WP3 using low-cost sensors to provide PM source information
- Understanding the requirements of the monitoring challenge and the uncertainty characteristics of the available tools is key!

Atmos. Meas. Tech., 17, 3809–3827, 2024 https://doi.org/10.5194/amt-17-3809-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmos. Meas. Tech., 14, 4139-4155, 2021

Atmospheric Measurement Techniques

Atmospheric

Techniques

Measurement

Atmos. Meas. Tech., 15, 4091–4105, 2022 https://doi.org/10.5194/amt-15-4091-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmos. Meas. Tech., 15, 4047-4061, 2022

https://doi.org/10.5194/amt-15-4047-2022

0 0

S Author(s) 2022. This work is distributed under

the Creative Commons Attribution 4.0 License.

Atmospheric Measurement Techniques

Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study

Sebastian Diez^{1,2}, Stuart Lacy², Hugh Coe³, Josefina Urquiza^{4,5}, Max Priestman⁶, Michael Flynn³, Nicholas Marsden³, Nicholas A. Martin⁷, Stefan Gillott⁶, Thomas Bannan³, and Pete M. Edwards^{2,8}

https://doi.org/10.5194/ame-14-1139-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study

Dimitrios Bousiotis¹, Ajit Singh¹, Molly Haugen², David C. S. Beddows^{1,3}, Sebastián Diez⁴, Killian L. Murphy⁴, Pete M. Edwards⁴, Adam Boies², Roy M. Harrison^{1,5}, and Francis D. Pope¹

> PAS 4023:2023 Selection, deployment and quality control of low-cost air quality sensor systems in outdoor ambient air – Code of practice

bsi

scientific **data**

A study on the performance of low-cost sensors for source apportionment at an urban background site

Dimitrios Bousiotis¹, David C. S. Beddows¹, Ajit Singh¹, Molly Haugen², Sebastián Diez¹, Pete M. Edwards³, Adam Boies², Roy M. Harrison¹, and Francis D. Pope¹

Air pollution measurement errors: is your data fit for purpose?

Sebastian Diez¹, Stuart E. Lacy¹, Thomas J. Bannan², Michael Flynn², Tom Gardiner³, David Harrison⁴

Nicholas Marsden², Nicholas A, Martin³, Katie Read^{1,5}, and Pete M, Edwards¹

www.nature.com/scientificdata

National Centre for Atmospheric Science

Thank you

