

# A Data Integration Approach to Estimate Personal Exposures to Air Pollution

### Dr. Matthew Thomas

Lecturer in Data Science & Analytics Department of Earth & Environmental Sciences Email: matthew.l.thomas@manchester.ac.uk

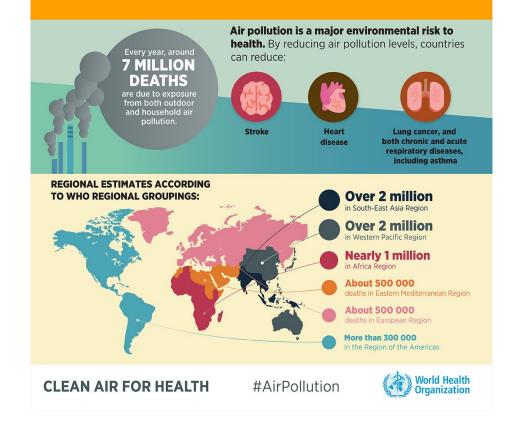
## With thanks to...



- University of Manchester
  - Matthew L Thomas
  - David Topping
  - Thomas J. Brannan
  - Hugh Coe
  - James Evans
- Royal Holloway
  - Gavin Shaddick
- Technical University of Denmark
  - Karyn Morrissey (Technical University of Denmark)

- Newcastle University
  - Mike Diessner
- Alan Turing Institute
  - Ruth Bowyer
  - Fernando Benitez-Paez
- University of Exeter
  - Stefan Siegert
- University of British Columbia
  - James Zidek






### **Air Pollution and Health**



- Globally, air pollution is the largest environmental risk to health
- WHO estimate that 4.2 million premature deaths every year can be attributed to ambient (outdoor) air pollution
- Over 99% of people worldwide are exposed to levels of PM<sub>25</sub> above ٠ the WHO Air Quality Guidelines
- Understanding the links between air pollution and health require ٠ detailed information of exposures to air pollution

### **AIR POLLUTION – THE SILENT KILLER**





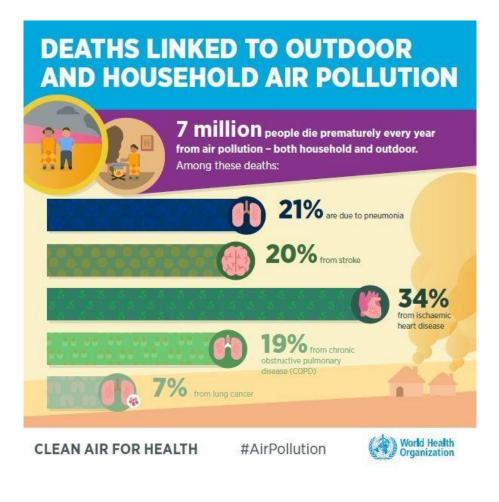


### **Air Pollution and Health**



- Accurate estimates of exposure to air pollution are required
  - Global, national and local levels
  - Measures of uncertainty
- How do we estimate exposures to air pollution?
  - Multiple data sources and products
  - Data is often out of date for decision making
  - Lack of disaggregated/detailed information
- What type of exposure
  - Population level
  - Personal level

#### **AIR POLLUTION – THE SILENT KILLER** Air pollution is a major environmental risk to health. By reducing air pollution levels, countries can reduce: **7 MILLION** DEATHS are due to exposure from both outdoor and household air pollution. Stroke Heart Lung cancer, and both chronic and acute disease respiratory diseases, including asthma **REGIONAL ESTIMATES ACCORDING Over 2 million TO WHO REGIONAL GROUPINGS:** n South-East Asia Region **Over 2 million** Western Pacific Region **Nearly 1 million** Africa Region About 500 000 eaths in Eastern Mediterranean Region About 500 000 More than 300 000 the Region of the Americas World Health Organization **CLEAN AIR FOR HEALTH** #AirPollution

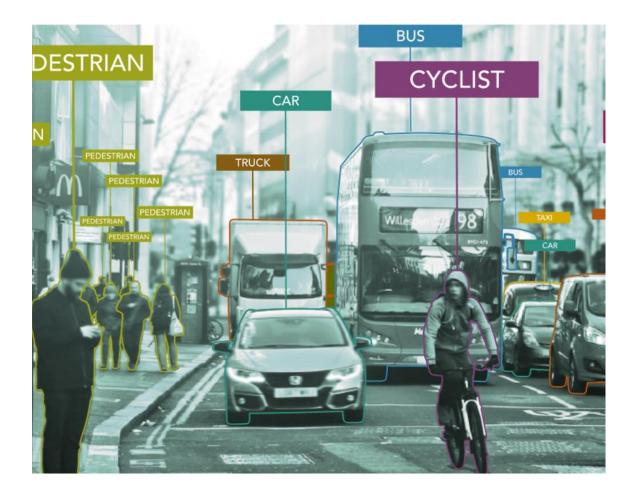





### A realistic estimate of exposure?



- Majority of research related to the health effects of air pollution has been at a population level
  - Measured or modelled concentrations of ambient pollution
  - Matched to residential address
- This does not necessarily reflect individual's exposures to different levels of air pollution throughout the day
- People move through a series of micro-environments with different levels of pollution
  - Work, home, school, outdoor, car, etc...



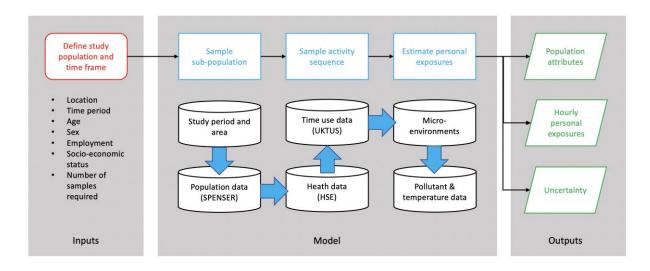







- The aim is to estimate personal exposures to air pollution
- Framework for integrating data on air pollution concentrations with population demographics, activities, locations and other factors affecting individuals' exposures
- Simulate the daily exposure of different population groups using agent-based modelling
- Differences between personal exposures and concentrations
- Consider all information relating to individual's exposure to pollutant in question
  - I: individual factors, e.g. age and sex
  - E: external factors, e.g. pollution, temperature
  - B: human behaviour





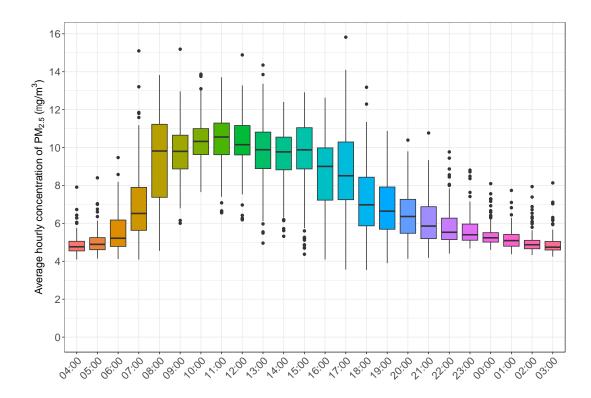



### **Framework for Personal Exposures Estimation**



- DIMEX consists of structural linkages between the model elements and builds upon previous exposure simulators, including pCNEM, SHEDS, APEX
- Incorporates new modelling techniques and increasing availability of data
  - Demographic information
  - Activity patterns
  - Micro-environments
- Generates a sequence of pollutant concentrations to which a randomly selected individual is exposed over time





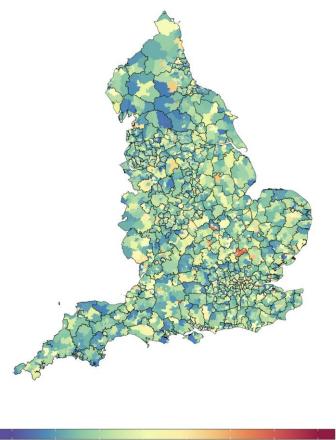



### **Framework for Personal Exposures Estimation**



- Estimates of personal exposures aggregated to populations
  - Measures of uncertainty
  - Individual's personal trajectory maps
  - Map differences between personal exposures and concentrations
- Can be used as inputs for health impact analyses and epidemiological risk models










#### • Population Data

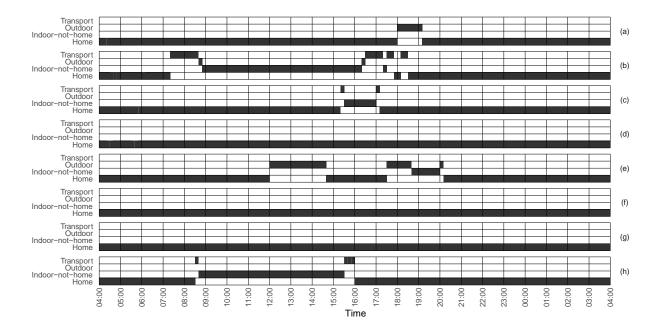
- Sampled from an underlying synthetic population (SPENSER) from the area of interest.
- SPENSER combines census data with other surveys and datasets to create a geo-referenced synthetic population forecast.



4000 6000 8000 10000 12000 14000 16000 18000








#### • Population Data

- Sampled from an underlying synthetic population (SPENSER) from the area of interest.
- SPENSER combines census data with other surveys and datasets to create a geo-referenced synthetic population forecast.

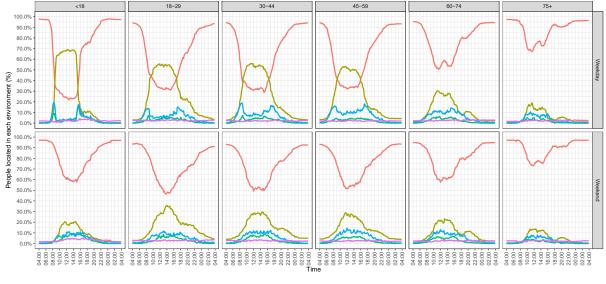
#### • Activity Sampler

- UK Time Use Survey provides information on how people in the UK spend their time.
- Diaries consists of sequences of activities and the locations that they take place in.










#### • Population Data

- Sampled from an underlying synthetic population (SPENSER) from the area of interest.
- SPENSER combines census data with other surveys and datasets to create a geo-referenced synthetic population forecast.

#### • Activity Sampler

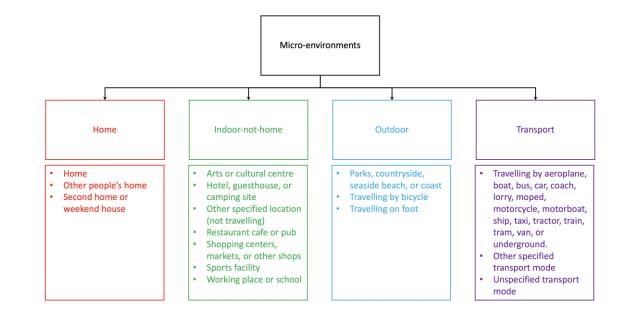
- UK Time Use Survey provides information on how people in the UK spend their time.
- Diaries consists of sequences of activities and the locations that they take place in.



Home — Indoor-not-home — Outdoor — Transport — Unknown





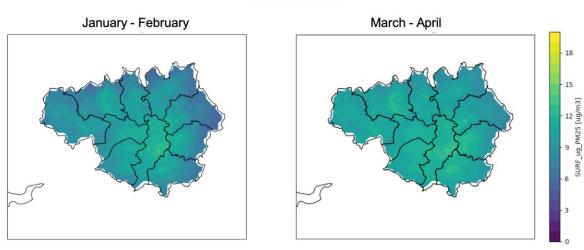



#### • Population Data

- Sampled from an underlying synthetic population (SPENSER) from the area of interest.
- SPENSER combines census data with other surveys and datasets to create a geo-referenced synthetic population forecast.

#### • Activity Sampler

- UK Time Use Survey provides information on how people in the UK spend their time.
- Diaries consists of sequences of activities and the locations that they take place in.
- Locations were categorised into four "microenvironments": Home, Indoor-not-home, Outdoor and Transport.



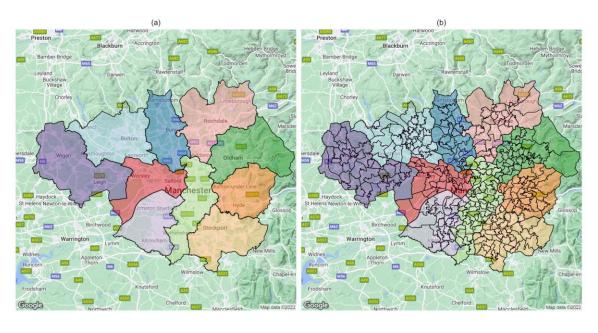


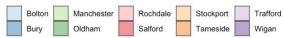



#### • Exposures

- Activity sequences matched to concentrations of air pollutions in each micro-environment.
- Modelled as a function of the ambient and/or non-ambient sources of air pollution.
- Outdoor concentrations come from ground measurements or EMEP model.






### **Case Study: Greater Manchester**

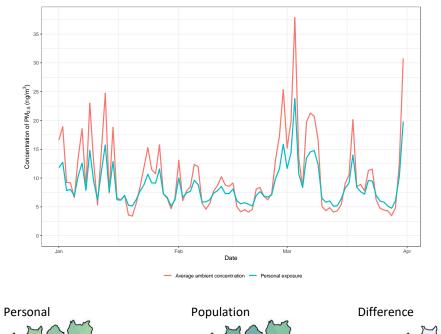


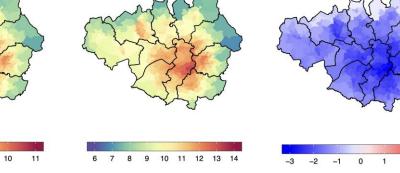
- DIMEX was used to estimate personal exposures for simulated individuals in Greater Manchester, UK
  - 2.8 million inhabitants
  - 10 metropolitan boroughs
  - 364 MSOAs
- Used modelled concentrations from EMEP for January March 2021
- Sampled 100 individuals from the synthetic populations for each MSOA











### **Case Study: Greater Manchester**



The University of Manchester

- DIMEX outputs hourly estimates of personal exposures that can be aggregated over space and time
- Compare personal exposures and ambient concentrations
  temporally
  - Differences of up to 15  $\mu {\rm g}/{\rm m3}$  for days with high concentrations
- Compare personal exposures and ambient concentrations spatially
  - Largest differences between the personal exposures and the ambient concentrations in urban areas
- Personal exposures are generally lower





0





2

### **Conclusions**



- It's important that we accurately estimate exposures to air pollution
- Many different data sources, types and products all telling the same thing
- Data Integration can be used to bring many of these sources together
  - Data Integration Model for Exposures (DIMEX)
- Many more things to do can be done
  - Linking directly with health
  - Short-term exposures
  - Other pollutants/exposures
- Requires collaboration





### Thank you! Any questions





Get in touch: matthew.l.thomas@manchester.ac.uk



