Quantifying Changes in Air Pollution Concentrations Caused by Traffic Interventions

Lilli Helps University of Leicester

Joshua Vande Hey University of Leicester Calvin Jephcote University of Leicester Emma Ferranti University of Birmingham Hannah May Leicester City Council

Introduction

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

An Overview of the Process

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

Building a Gradient Boost Model

Optimising Model Parameters

Step 1

Set a high learning rate with fixed tree parameters and determine the number of trees

Learning rate	0.1
Maximum number of trees	10,000
Interaction depth	1
Minimum observations per node	10
Bagging Fraction	0.5

Step 2

With the same learning rate and the number of trees you just calculated, optimise the tree parameters

Learning rate	0.1
Number of trees	As calculated
Interaction depth	1 - 10
Minimum observations per node	10 - 100
Bagging Fraction	0.1 - 0.9

Step 3

With the optimised tree parameters, see if you achieve any improvement by decreasing the learning rate

Learning rate	0.02 - 0.1
Maximum number of trees	10,000
Interaction depth	As calculated
Minimum observations per node	As calculated
Bagging Fraction	As calculated

UKRI/Met Office Clean Air Conference

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

Conclusions and Future Work

Gradient boost can be used to help quantify the effects of an intervention

This method is sensitive to overfitting, making parameter optimising an important step

Looking at partial dependencies and the influences of different variables can help us interpret results

UKRI/Met Office Clean Air Conference

2nd – 3rd October 2024

Thank you

Questions

