

Regional Health Impact related to Air Quality: The Air Quality Lifecourse Assessment Tool (AQ-LAT) for the West Midlands Combined Authority (WMCA) area

Dr James Hall on behalf of Dr Suzanne Bartington, Dr Jian Zhong, Prof. Sue Jowett and the WM-AIR team

Health Economic impacts of poor air quality

- Air pollution shortens life expectancy, increases chance of dying or getting a chronic disease
- Estimated to contribute 26,000 38,000 annual premature deaths in England
- Key pollutants of public health concern are:
 - Nitrogen dioxide (NO2) primarily from vehicle emissions
 - Particulate matter (PM) from industry, domestic combustion, and transport
- Associated downstream consequences
 - More hospital admissions and use of primary care services
 - Higher burden of social care
 - Economic losses from time off work

Rationale for the AQ-LAT

- Health impact assessment formal requirement for most clean air investment
- Existing Tools available but use national rather than local data for air pollution exposure and health outcomes
- Developments in air quality modelling allow for quantitative assessment at localised level across various policy sectors
- 2021 Environment Act includes both limit values and population exposure reduction targets
- Policy landscape motivates need for local health impact assessment tools

Air Quality Life Assessment Tool interface

		All Birmingham wards			
Step One	£40,853,000	10 year NHS cost savings			
District	£18,404,000	10 year indirect cost savings* Return to front page Deaths prevented over 10 years			
Ward	£20,522,000				
Time Horizon Discount Rate Costs	2405				
Discount Rate QALYs	13315	QALY gains	over	10 years worth(£)	£266,305,938
PM2.5 annual average co NO2 annual average con	4620 Asthma cases prevented over 1361 CHD** cases prevented over 272 Lung Cancers prevented over	10 years	£1,058,425 £36,309,052	Distribution of NHS costs Primary Care costs averted over Secondary Care costs averted o	*
Step Two: Either c	1113 Strokes prevented over	10 years	£3,461,103	Prescription costs averted over	er 10 years
PM2.5 Target (µg/m3) NO2 Target (µg/m3) Target Population (%)	2021 Annual Attributable Incident of Annual Asthma Cases 874		195787	Days off work averted over	10 years
	Annual CHD** cases 267 Annual Lung Cancers 60		£33,274,000	Discounted NHS cost savings o	ver 10 years
Pre-selected air pollution s *Pre-selected scenarios apply to e	Annual Strokes 235 Annual mortality 716		10462	Discounted QALY gains over	10 years

*Indirect costs reflect the time off work owing specifically to death-related absence, does not include productivity and care costs

Step Three:

override with slider if requi

Run your calculations

**Coronary Heart Disease

AQ-LAT Methods paper - Environmental Pollution

Environmental Pollution 356 (2024) 123871

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Regional impact assessment of air quality improvement: The air quality lifecourse assessment tool (AQ-LAT) for the West Midlands combined authority (WMCA) area*

James Hall ^a, Jian Zhong ^b, Sue Jowett ^a, Andrea Mazzeo ^{b,c,d}, G. Neil Thomas ^c, John R. Bryson ^e, Steve Dewar ^f, Nadia Inglis ^g, Mark Wolstencroft ^h, Catherine Muller ^b, William James Bloss ^b, Roy M. Harrison ^{b,i}, Suzanne E. Bartington ^{c,*}

^a Health Economics Unit, Institute of Applied Health Research, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK

b School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK

^c Institute of Applied Health Research, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK

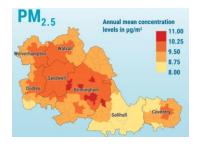
^d Lancaster Environment Centre (LEC), Lancaster University, Bailrigg Campus, Lancaster LA1 4YW, UK

^e Department of Strategy and International Business, Birmingham Business School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

f Coventry City Council, Earl Street, Coventry, CV1 5RR, UK

⁸ Walsall Council, Civic Centre, Darwall Street, Walsall, WS1 1TP, UK

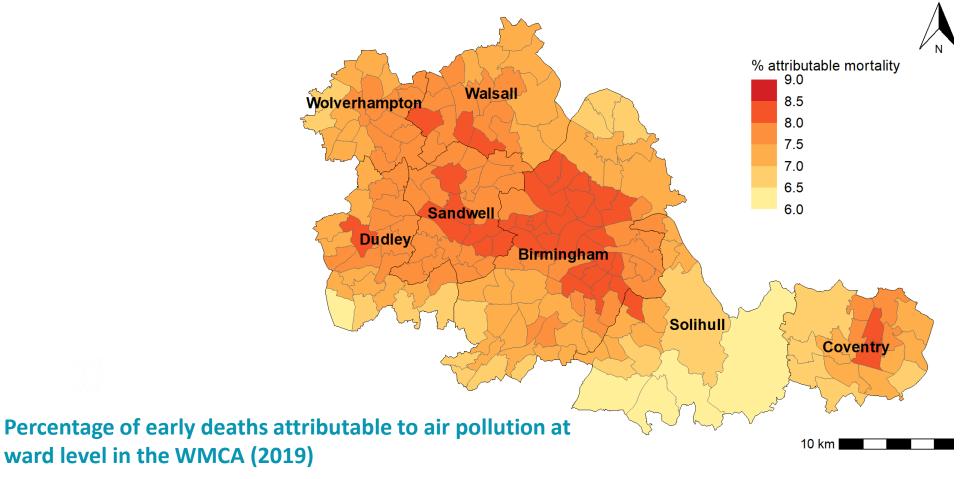
^h Birmingham City Council, Victoria Square, Birmingham, B1 1BB, UK


¹ Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia

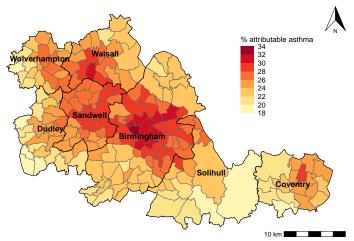
AQ-LAT methodological advantages

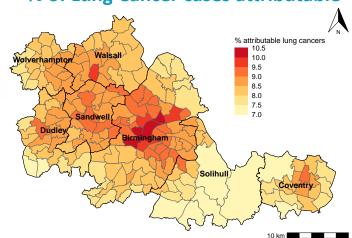
 Modelling disease-related air quality burden is more informative than air pollution concentration maps alone for health insights

Population modelling not only quantifies impact of air pollution on health but community **vulnerability** to poor air quality

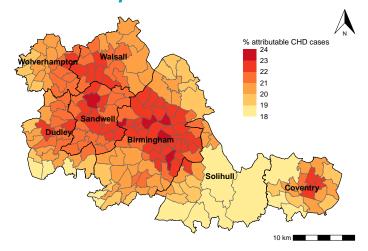

ADMS-Urban air quality modelling estimates local air quality dynamics coupled with predictive analysis of air quality scenarios across variety of policy sectors

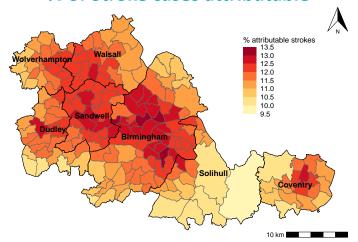
Health Economic models power comprehensive estimation of impacts to NHS, local authority via social care, and lost productivity to the broader economy


AQ-LAT informing air quality policy decisions



AQ-LAT informing air quality policy decisions

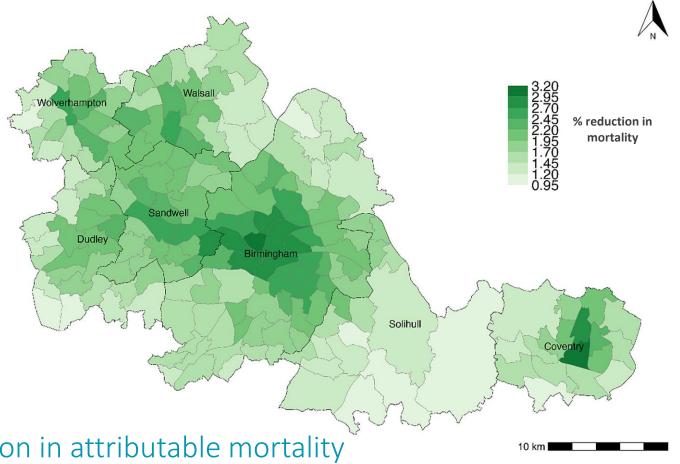

% of Asthma cases attributable


% of Lung Cancer cases attributable

% of Coronary Heart Disease cases attributable

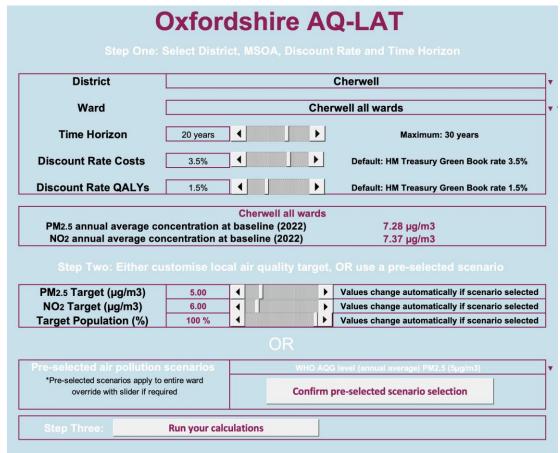
% of Stroke cases attributable

AQ-LAT policy-ready analyses


- Smaller-scale single-sector interventions can have limited impact upon health outcomes
- Unpublished health impact assessment over 5-years for Birmingham clean air zone*
 - 37 asthma and 1 lung cancer case prevented
 - 4 deaths averted
 - 12 Quality Adjusted Life Years (QALYs) gained
 - £30,000 NHS cost savings
 - £1.7M benefit from life years gained

AQ-LAT policy-ready analyses

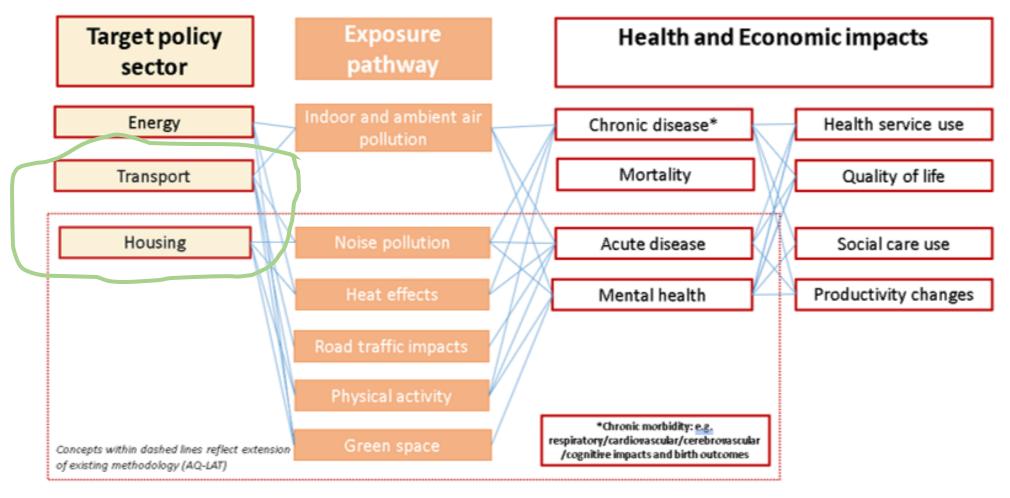
- Multi-sector interventions across larger geographical areas more likely to have significant health impacts
- AQ-LAT can help estimate scale and distribution of health impacts



% reduction in attributable mortality in complying with 2021 WHO Global Air Quality Guidelines in WMCA

What next? Expand coverage

•What next ?


WM-NET ZERO CLIMATE-LAT

A toolkit to estimate the **health and economic impacts of net zero scenarios**

Proposed methodology

Thank you for listening

Thanks to the following:

The WM-Air research team and study partners led by Professor William Bloss

Dr Pelham Barton, now retired formerly Health Economics Unit UoB

Anita Charlesworth CBE and Dr James Shearer (Health Economics Study Group)

Alex Jones, Air Quality Framework Programme Lead (WMCA)

Karen Exley (UK Health Security Agency)

CERC (Cambridge Environmental Research Consultants)

All stakeholders and academics who have had input into WM-Air and AQ-LAT development

WM-Air is a Natural Environment Research Council Regional Impact from Science of the Environment (RISE) initiative [grant number NE/S003487/1]. Research also supported by Clean Air Programme and TRANSITION Clean Air Network (NE/V002449/1).

