

A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

#### Improving air quality and environmental health inequalities in a metropolitan area of the United Kingdom

James Hodgson, Suzanne Bartington, Zongbo Shi and William Bloss University of Birmingham

West Midlands

100

Sandwell

CERC

WM-AIR

THE INSTITUTE FOR GLOBAL INNOVATION

UNIVERSITY OF

*bi* 

FUND

Departmen

for Environment

Food & Rural Affairs





Natural The WM-NetZero project is supported by Wellcome Trust (227150\_Z\_23\_Z) under the Advancing climate mitigation policy solutions with health co-benefits in G7 countries scheme.



- Ambient air pollution is the largest environmental risk to human health globally
- ~4.2 million premature deaths annually worldwide
- 26,000 38,000 premature annual deaths in England or a 6-month reduction in life expectancy
- The most disadvantaged communities generally experience the worst pollution and are less likely to have capability to make lifestyle changes to reduce exposure









A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

• WHO updated the 2005 Global Air Quality Guidelines (AQGs) in September 2021 along with Interim Targets

| Pollutant         | Averaging   | Air Quality | WHO             | WHO 2021 Update |    |      |           |                 |
|-------------------|-------------|-------------|-----------------|-----------------|----|------|-----------|-----------------|
|                   | Time        | Objectives  | Guideline       | Interim Targets |    |      | Guideline |                 |
|                   |             | (England)   | 2005            | 1               | 2  | 3    | 4         |                 |
| Fine              | Daily (24-  |             | 25 <sup>1</sup> | 75              | 50 | 37.5 | 25        | 15 <sup>1</sup> |
| Particles         | hour)mean   |             |                 |                 |    |      |           |                 |
| raiticies,        | Annual mean | 25          |                 | 35              | 25 | 15   | 10        | (5)             |
| PM <sub>2.5</sub> |             |             |                 |                 |    |      |           |                 |
| Nitrogen          | Daily (24-  |             |                 | 120             | 50 |      |           | 25 <sup>1</sup> |
| Diavida           | hour) mean  |             |                 |                 |    |      |           |                 |
| Dioxide,          | Annual mean | 40          | 40              | 40              | 30 | 20   |           | 10              |
| NO <sub>2</sub>   |             |             |                 |                 |    |      |           | 10              |

- Not legally binding, however
- Introduction of a 10 µg m<sup>-3</sup> threshold target and Population Exposure Reduction Target (PERT) to achieve a 35% reduction in population exposure to PM<sub>2.5</sub> by 2040





# Study Area

#### WM-NET ZERO



- Seven metropolitan areas with a diverse population of ~2.9 million
- In the West Midlands, up to 2,300 premature deaths each year were attributable to air pollution, with the greatest mortality burden occurring in Birmingham and Sandwell (Hall *et al.*, 2024)
- Chaired by an elected Mayor with devolved powers and has a committed vision to deliver a carbon-neutral region by 2041.
- Air Quality Framework that aims to deliver regional air quality that is safe for all and will improve public health and the environment
- Includes a focus on PM, where previous government and local authority targets and challenges have been around exceedances of NO<sub>2</sub>





Air Quality Data

- Defra's background air quality concentrations map
- Mean estimated annual average PM<sub>2.5</sub> concentration for 2019 assigned to 1 km grids across the West Midlands.
- Interpolated via ordinary kriging within a GIS to generate a midlands-wide PM<sub>2.5</sub> map
- Defra data utilised for public and UK-wide replication: WM-Air modelled PM<sub>2.5</sub> levels provide higher resolution spatial information and can distinguish between different PM sources

#### WM-NET ZERO







# Demographic and Socio-Economic Data

WM-NET ZERO

A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies



• On average, the WMCA population is younger than the England average



The WM-NetZero project is supported by Wellcome Trust (227150\_Z\_23\_Z) under the Advancing climate mitigation policy solutions with health co-benefits in G7 countries scheme.



# Population Weighted Exposure Level (PWEL)

WM-NET ZERO

A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

- PWEL has been utilised in previous studies to provide a measure of exposure assessment that takes into account the spatial distribution of the population and air pollution concentrations across a defined geographical area (Shafie *et al.*, 2022; Shakor *et al.*, 2020; Shendie and Qureshi, 2022).
- In this study, PWEL was applied at ward level across the WMCA region (total population):

PWEL (µg/m<sup>3</sup>) = <u>Study Area PM<sub>2.5</sub> (ward) x Study Area (ward)</u> Total Population (WMCA)

Shafie et al. (2022) https://doi.org/10.1186/s13717-021-00342-0

Shakor et al. (2020) https://doi.org/10.1155/2020/1561823

Shendie and Qureshi (2022) https://doi.org/10.4491/eer.2021.042



- Three air quality scenarios were examined to determine how changing annual average PM<sub>2.5</sub> concentrations over the WMCA area would influence future population exposure values relevant to 2019 levels:
- A. Reducing (ward average)  $PM_{2.5}$  concentrations to 10  $\mu$ g/m<sup>3</sup> (WHO AQG Interim Target 4)
- B. Reducing (ward average)  $PM_{2.5}$  concentrations to 5  $\mu$ g/m<sup>3</sup> (WHO AQG)
- C. Reduce ward level concentrations by 35% of 2019 levels through a lowering of ward-average PM<sub>2.5</sub> concentrations (Population Exposure Reduction Target)



#### WHO AQG Exceedances

#### WM-NET ZERO



- 72 wards exceeded the WHO AQG Interim Target 4 of 10  $\mu g/m^3$  for  $PM_{2.5}$  in 2019
- ~1,197,119 people or 40.9% of the WMCA population
- Majority of these wards are in central Birmingham, Sandwell and south-central Walsall
- Wolverhampton is the only local authority to have no wards over 10  $\mu g/m^3$
- Larger number of exceeding wards in more deprived deciles

| Decile | >10 µgm/3 |
|--------|-----------|
| 1      | 15        |
| 2      | 12        |
| 3      | 10        |
| 4      | 11        |
| 5      | 6         |
| 6      | 7         |
| 7      | 6         |
| 8      | 3         |
| 9      | 2         |
| 10     | 0         |



### Population Exposure Reduction Scenarios



#### WM-NET ZERO

A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

#### Scenario C

- Achieving the PERT target of a concentration reduction of 35% would greatly reduce PWEL across the region
- Large population centres have higher PWEL values



A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

#### Modelled AQ and Index of Multiple Deprivation Data





| Local Authority | Mean PM <sub>2.5</sub> | Mean PM <sub>2.5</sub> | Mean PM <sub>2.5</sub> | Mean PM <sub>2.5</sub> | PWEL     | PWEL       | PWEL       | PWEL       |
|-----------------|------------------------|------------------------|------------------------|------------------------|----------|------------|------------|------------|
|                 | Baseline               | Scenario A             | Scenario B             | Scenario C             | Baseline | Scenario A | Scenario B | Scenario C |
| Birmingham      | 9.91                   | 9.68                   | 5                      | 6.44                   | 9.81     | 9.62       | 0.028      | 6.38       |
| Coventry        | 9.88                   | 9.69                   | 5                      | 6.42                   | 1.27     | 1.23       | 0.634      | 0.82       |
| Dudley          | 9.29                   | 9.28                   | 5                      | 6.04                   | 1.02     | 1.02       | 0.023      | 0.67       |
| Sandwell        | 10.39                  | 9.97                   | 5                      | 6.75                   | 1.17     | 1.12       | 0.023      | 0.76       |
| Solihull        | 9.3                    | 9.24                   | 5                      | 6.04                   | 0.69     | 0.68       | 0.369      | 0.45       |
| Walsall         | 9.87                   | 9.7                    | 5                      | 6.41                   | 0.97     | 0.95       | 0.024      | 0.63       |
| Wolverhampton   | 9.1                    | 9.1                    | 5                      | 5.92                   | 0.82     | 0.82       | 0.022      | 0.53       |

- PM<sub>2.5</sub> concentrations were lowest in Wolverhampton and highest in Sandwell
- Birmingham has the highest population so the largest PWEL value
- Birmingham, Sandwell and Coventry would see the greatest population-level benefit from reduced concentrations







- The WMCA is strongly influenced by PM<sub>2.5</sub> pollution
  - 72 wards / ~1.2 m people / 40.9% of the population exceeding 10  $\mu g/m^3$
- More deprived wards in the WMCA typically having poorer air quality and higher PWEL values
- Meeting WHO Interim Target 4 would benefit the most deprived wards / urban city centres
- Meeting the PERT target would have the greatest overall population benefit, but the most deprived wards would still experience poorer air quality



A Health-centred Systems Approach Towards Net-Zero: Transforming Regional Climate Mitigation Policies

#### Thank you for your attention!

James Hodgson University of Birmingham j.r.hodgson@bham.ac.uk



Get involved and stay connected X: https://x.com/WMNetZero LinkedIn: linkedin.com/company/wm-net-zero E-mail: wm-netzero@contacts.bham.ac.uk Website: https://wm-netzero.org.uk/ Mailing List: eepurl.com/iN7L2U

#### #WMNetZero





The WM-NetZero project is supported by Wellcome Trust (227150\_Z\_23\_Z) under the Advancing climate mitigation policy solutions with health co-benefits in G7 countries scheme.

