

Sources of the fine particulate matter (PM2.5) in the West Midlands using multiple receptor modelling approaches

Deepchandra Srivastava, Supattarachai Saksakulkrai, W. Joe F. Acton, Daniel J. Rooney, James Hall, Siqi Hou, Mark Wolstencroft, Suzanne Bartington, Roy M. Harrison, Zongbo Shi, William J. Bloss

WM-AIR@CONTACTS.BHAM.AC.UK

@WMAIR_UOB

WM-AIR.ORG.UK

Environment Research Council

Introduction to Air Quality

WHO guidelines (5 μg m⁻³ annual mean) are exceeded in most urban areas in England

Exposure to air pollution: UK: 28,000-36,000 premature deaths West Midlands: with 2070 deaths, 2070 asthma diagnoses, 770 CHD diagnoses, 170 lung cancers and 650 strokes

"This study presents the results obtained from the receptor modelling applied to a filter-derived dataset collected in the West Midlands"

Particulate matter (PM_{2.5})

Monitoring Sites in Birmingham

- Birmingham Air Quality Supersite ("BAQS") and Ladywood ("LW")
- Urban background sites

- 24-hour Filter
- Sampling period at BAQS: Jan 2021-Feb 2022 •
- Sampling period at LW: Jan 2021-Dec 2021

UNIVERSITYOF

High Volume Sampler

Filter were analysed for Organic carbon (OC), Elemental Carbon (EC), Ions, Metals and Organic compounds.

OC/EC

Ca²⁺, Mg²⁺, Na⁺, K⁺, NO₃⁻, SO₄²⁻, NH₄⁺, Cl

Fe, Al, Ti, Sb, Ni, V, Cu, Zn, Cr, Pb, Ce, Cd, Co, Mn

Organics-levolglucosan (LG), mannoson (MN), Glactosan (GA),.....

PM_{2.5} chemical composition/trends

Average annual PM_{2.5} =8.1 μ g m⁻³ WHO limit= 5 μ g m⁻³ England \rightarrow 10 μ g m⁻³ is to be achieved by 2040 London: 10.1 μ g m⁻³

UNIVERSITYOF

WM-AIR

Chemical mass closure

Quantitative source apportionment of $PM_{2.5}^{\text{BIRMINGHAM}}$

- Positive Matrix Factorisation ("PMF")-developed by US EPA
- Aethalometer model: Black carbon (BC)

Identified components	% Contribution to PM mass	Concentration (µg m ⁻³)	
Biomass burning 1	19	1.5	
Biomass burning 2	6	0.5	
Resuspended dust-and traffic-related	22	1.7	
Fuel oil combustion	9	0.7	
Sea salt	9	0.7	
*Secondary aerosols	25	1.9	
Biogenic SOA	10	0.7	

WM-AIR

UNIVERSITYOF

*Secondary aerosols – including from power generation, agriculture, traffic

Quantitative source apportionment of $PM_{2.5}$

51% of winter primary PM_{2.5} concentrations

- ✓ 19% of PM_{2.5}
- Dominated by Sugars (formed via pyrolysis of cellulose) and resin acid

WM-AIR

- Contribution is higher in winter than summer
- ✓ Linked to heating (residential) activities in winter
- ✓ 6% of PM_{2.5}
- ✓ Dominated by Levoglucosan, a known sugar
- ✓ Significant contribution year –round
- Linked to activities such as garden waste burning, biomass boilers or barbecues

Quantitative source apportionment of $PM_{2.5}^{\text{BIRMINGHAM}}$

Biomass burning sources from independent measurements, at BAQS

 ✓ PMF=Biomass burning 1+ Biomass burning 2

WM-AIR

 Aethalometer- Biomass burning contribution measured using aethalometer (BC) data

PMF and Aethalometer-model analyses showed consistent results

	Current study	Yin et al.2010	Harrison et al.2012	Harrison et al.2012	Yin et al.2015
Time	2021-2022, winters, BAQS	2007, 2008- winters, BAQS	2007-2008, Birmingham	2010-2011, London	2012-winter, London
Concentrations	2.4 μg m ⁻³	0.07 μg m ⁻³	0.23 μg m ⁻³	0.30 μg m ⁻³	0.15 μg m ⁻³

Implications for policy

- The contribution of biomass burning activities to PM_{2.5} is even higher in the winter, at around 51% of all primary concentrations.
 - Both local and national policy interventions are required to reduce wood burning related PM_{2.5} exposure.
- Traffic-related activities accounted for 22% of the total PM_{2.5} mass.
 - Targeted local policies and change in traffic behaviour can effectively reduce PM_{2.5} exposure from traffic sources.
- Secondary aerosols accounted for a quarter of the total PM_{2.5} mass.
 - Regional and local emission reduction targets can help in reducing secondary aerosol formation (by promoting sustainable farming practices and transitioning towards cleaner technologies).
- The estimated annual mortality attributable to PM_{2.5} in the West Midlands region is 2,070 (via AQ-LAT).
 - Locally targeted interventions, raising awareness about residential wood burning, and enhancing smoke control areas could significantly reduce the mortality and saves lives.

"Thank you"