

The impact of air change rates on the indoor air chemistry of homes in Bradford: a modelling study within the **INGENIOUS** project

D.R. Shaw, L. Chatzidiakou, D. Genes, C. Wood, A. Kumar, T.J. Dillon and N. Carslaw

The University of Manchester

Understanding the sources, transformations and fates of indoor air pollutants

- 315 homes recruited, surveyed and measured
- Over 3.5 million indoor air quality observations from low-cost sensors
- See Nic's poster!

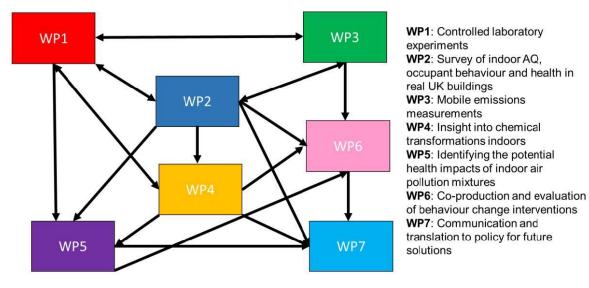
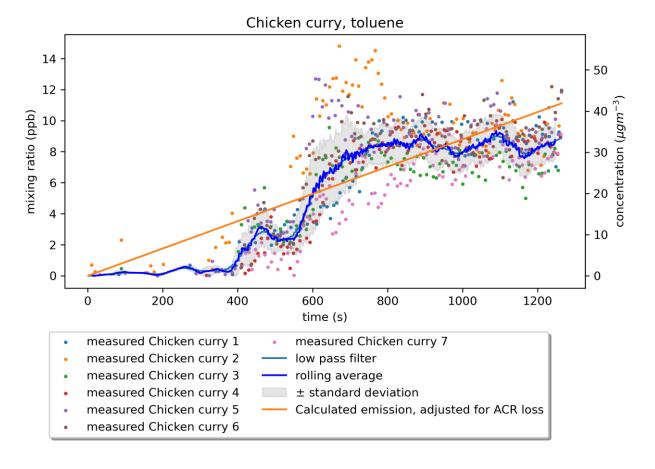


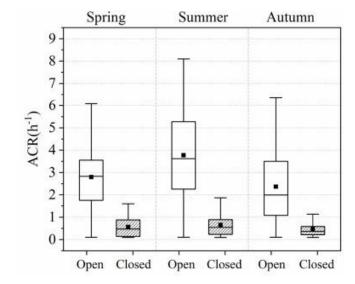
Figure 1: Interconnections between workpackages



Cooking emissions

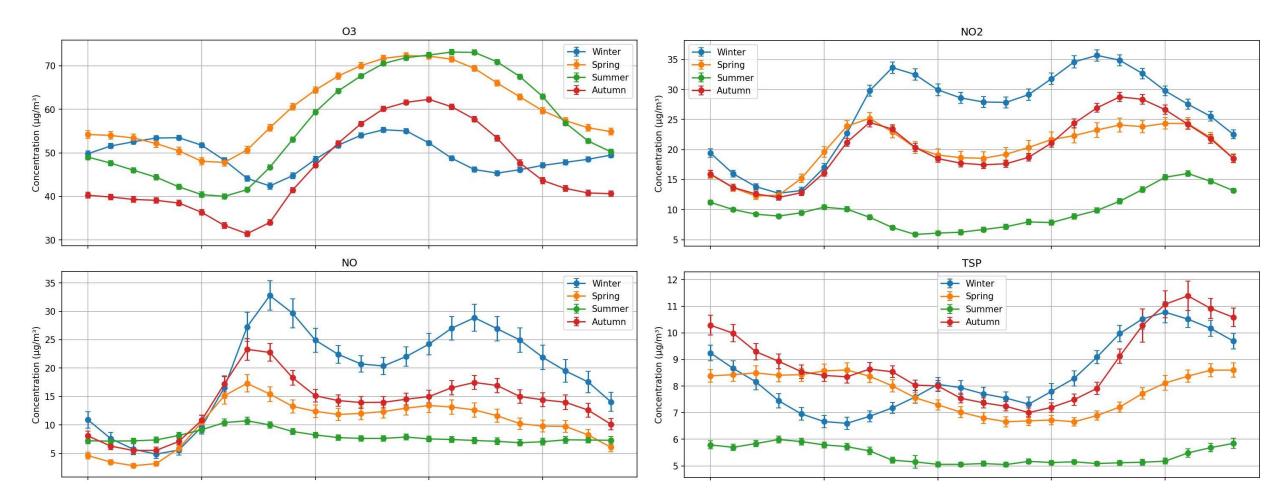
- Standardised 6 recipes, chicken curry used in this work
- Continuous VOC measurement using SIFT-MS
- 1 whole air canister collection per recipe for GC-MS analysis
- Emission rates calculated for 39 species

Air change rate calculations


- Calculated from CO₂ decay rate
- Median rates per season used as background
- Intervention (opening a window) assumed to cause a factor of 5 increase in air change rate based on Liu et al. (2022)

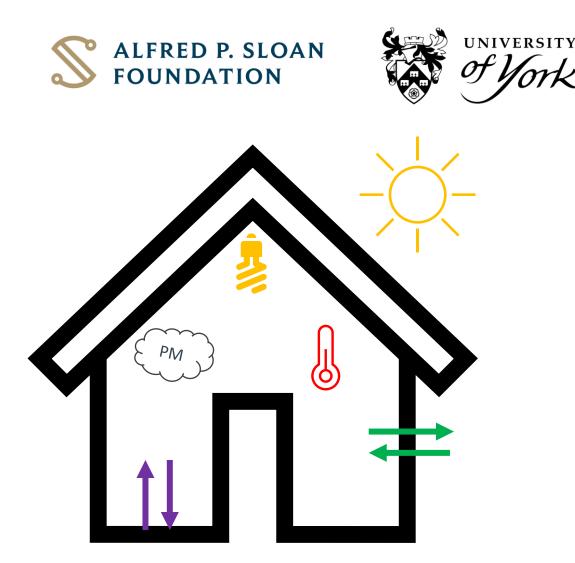
Season	Median air change rate (h ⁻¹)	Intervention air change rate (h ⁻¹)
Spring	0.84	4.2
Summer	0.79	3.95
Autumn	0.83	4.15
Winter	1.02	5.1

Liu, S. *et al.* (2022) 'Associating occupants' interaction with windows with air change rate --One case study', *Building and Environment*, 222, p. 109387. Available at: <u>https://doi.org/10.1016/j.buildenv.2022.109387</u>.



Outdoor pollutants

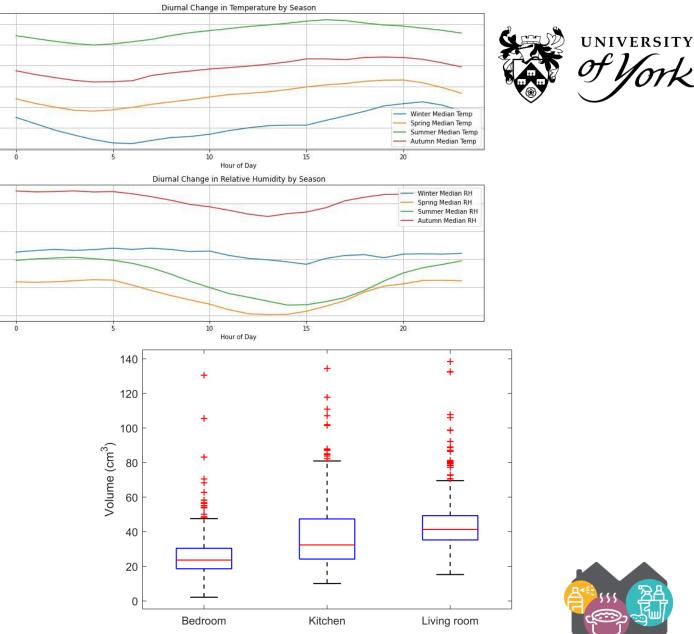
Diurnal profiles combined from sensors located across Bradford (n=25) and additional sensors in Leeds (n=2) and Dewsbury (n=1) during the campaign period. Split by season.


These include AURN, Zephyr, AQMesh and city council reference measurements.

ÍNCHEM-Py

Indoor Chemical Model in Python

- Open-source community box-model¹
- Utilises the Master Chemical Mechanism²
- Designed to capture the realistic evolution of indoor air chemistry
- Easy to use
- Has a detailed user manual

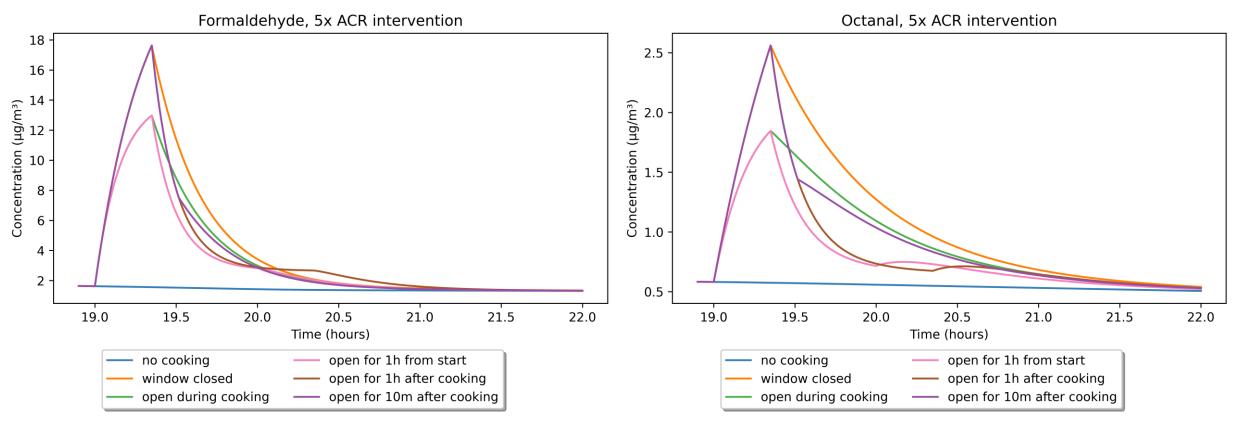

 Shaw, D., & Carslaw, N. (2021). An open source Python box model for indoor air chemistry. *Journal of Open Source Software*, https://doi.org/10.21105/joss.03224
Jenkin, M. E., Saunders, S. M., & Pilling, M. J. (1997). The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. *Atmospheric Environment*, *31*(1), 81–104. https://doi.org/10.1016/S1352-2310(96)00105-7

Other input parameters

(%)

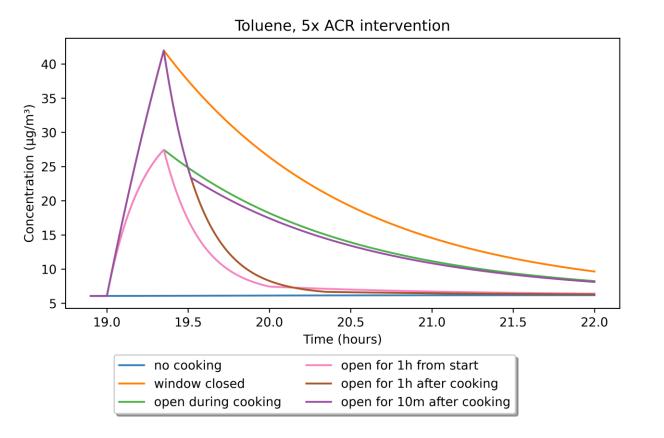
Relative H

	•
Temperatures (°C). Median values	Winter: 17.1 Spring: 18.5 Summer: 21.8 Autumn: 19.9
Relative humidity (%) Median values	Winter: 62.3 Spring: 59.4 Summer: 59.9 Autumn: 66.3
Volume (m ³) Median value	32.4 (Kitchen)
Surface areas (m ²) Median value of total surface area scaled to ratios for a kitchen from Carter (2023)	Soft furnishings: 2 Painted: 24.61 Wood: 16.51 Metal: 7.72 Concrete: 1.13 Paper: 0.19 Plastic: 7.15 Glass: 1.5 Human: 2 (one adult)



Carter, T.J. *et al.* (2023) 'A Modelling Study of Indoor Air Chemistry: The Surface Interactions of Ozone and Hydrogen Peroxide', *Atmospheric Environment*, 297, p. 119598. Available at: <u>https://doi.org/10.1016/j.atmosenv.2023.119598</u>.

Results



- Cooking at 19:00
- Chicken curry, 21 minute emission
- Summer outdoor concentrations and air change rates

Results

Percentage reduction in exposure

	Formaldehyde	Octanol	Toluene
Open during cooking	14.9	13.6	27
Open for 1h from start	21.9	26.2	52.6
Open for 1h after cooking	8.5	19	45.2
Open for 10m after cooking	10.3	12	24.3

- Cooking at 19:00
- Chicken curry, 21 minute emission
- Summer outdoor concentrations and air change rates

Why do (and don't) people ventilate their homes?

Study 1 interviews:

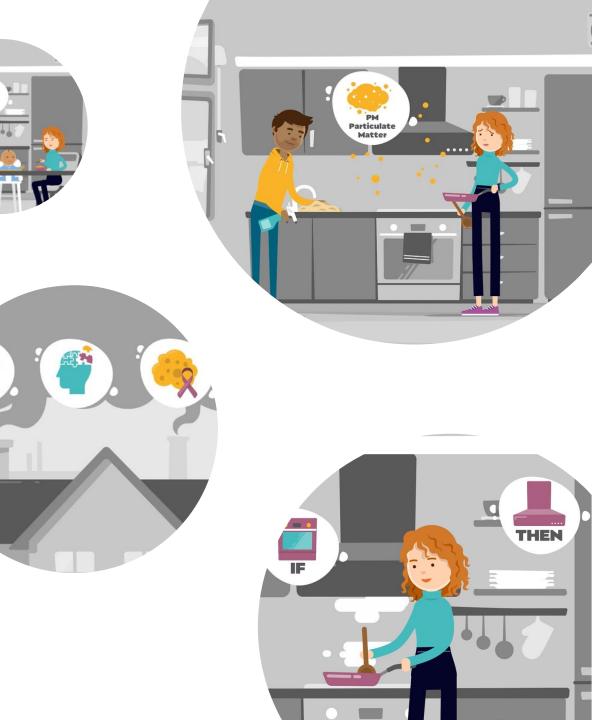
- Semi-structured interviews with 30 participants (mean age = 44 years; 60% White, 37% Asian; 100% female) from the Born in Bradford Growing Up study cohort
- Interview transcripts analysed via hybrid inductive/deductive content and thematic analysis to identify the barriers to and facilitators of ventilation behaviours

Study 2 survey:

 Online survey of 310 participants (mean age = 46.63 years, SD = 15.9 years; 82.9% White, 8% Asian, 4% Black; 51.6% female) recruited from Prolific to identify the barriers to and facilitators of ventilation behaviours

Questions were based on the COM-B (Capability, Opportunity, Motivation – Behaviour) Model (Michie et al., 2011), a framework for understanding behaviours in terms of people's physical/psychological capability, physical/social opportunity, and automatic/reflective motivation

Key Results


- Participants had good knowledge of key sources of indoor air pollution and that ventilation could reduce indoor air pollution...but most hadn't really thought about indoor air pollution
- Participants had less knowledge about the health impacts of indoor air pollution, and ventilation tended to be motivated more by concerns about comfort than health
- Many participants believed that they have good air quality in their homes; and on average, participants thought that air pollution outdoors was higher and more harmful to health
- Other key barriers to ventilation:
 - Poor weather
 - The financial cost of heating while ventilating, or of using an extractor fan/cooker hood
 - Noisy/faulty extractor fans/cooker hoods
 - Security concerns
 - Difficulty remembering to ventilate

Overcoming barriers to ventilation behaviours

- Behaviour change intervention (4 min animated video) co-designed (with Bradford community members) to encourage people to ventilate their kitchens
- Does it increase ventilation behaviour, reduce indoor air pollution (PM, TVOCs) and improve health?
 - Currently evaluating acceptability and initial effectiveness in 90 households from Born in Bradford

More details at ingenious.york.ac.uk

Stockholm Environment Institute

UK Research and Innovation

Email: <u>david.shaw@york.ac.uk</u>

INCHEM-Py can be downloaded from https://github.com/DrDaveShaw/INCHEM-Py