Particulate Matter in UK School Classrooms

IMPERIAL

Alice Handy

Particulate matter and indoor air quality

- Robust links between particulate matter (PM) and health effects ... and children can be more venerable
- Most of us spend more than 80% of our time indoors
- School indoor air quality (IAQ) can be important for:
 - health,
 - attention levels,
 - attainment
- Sources of PM in schools from indoors and outdoors

These are some of the issues SAMHE is aiming to address ...

What is **SAMHE?**

- Schools' Air quality Monitoring for Health and Education
- UK's first national dataset of school indoor air quality
- Schools receive a FREE high spec air quality monitor
- Measuring:
 - Carbon dioxide
 - Temperature
 - Humidity
 - Particulate Matter
 - TVOCs
- Novel Methodology

The SAMHE process

Over 1400 monitors sent out Over 800 monitors connected

Schools receive and set up a SAMHE monitor SAMHE scientists set activities on the SAMHE Web App Pupils complete fun activities, learning about air quality and inputting important contextual data

The data goes to SAMHE scientists so they can analyse and report on air quality in UK classrooms

PM_{2.5} in UK schools: data in this study

Academic year 2023 – 2024

295 days, 133 school days

SAMHE Schools

Total: 490 schools SAMHE PM_{2.5} concentration

PM_{2.5} in UK schools: data in this study

Academic year 2023 – 2024

295 days, 133 school days

SAMHE Schools

Total: 490 schools SAMHE PM_{2.5} concentration

Ambient outdoor: AURN sites

Nearest background AURN site nearest to each school Average distance between schools and AURN sites: 14.2 - 19.2 km Total: 77 sites

AURN PM_{2.5} concentration

- AURN PM_{2.5} concentration higher than SAMHE PM_{2.5} concentration
- SAMHE and AURN strongly correlated

Impact of elevated outdoor concentrations

Health-based guidance on PM_{2.5}

Impact of elevated outdoor concentrations

Outdoor WHO PM_{2.5} event:

AURN 24-hour mean $PM_{2.5}$ concentration > 15 µg/m³

WHO Outdoor PM_{2.5} events

Outdoor WHO PM_{2.5} event:

AURN 24-hour mean $PM_{2.5}$ concentration > 15 µg/m³

Outdoor WHO PM_{2.5} events lead to elevated concentrations in schools

WHO Outdoor PM_{2.5} events

Outdoor WHO PM_{2.5} events lead to elevated concentrations in schools

Moderate Outdoor PM_{2.5} events

Investigate more frequent but less extreme events

Threshold = median + standard deviation over year = $9.6 \,\mu g/m^3$

Moderate Outdoor PM_{2.5} events

Outdoor Moderate PM_{2.5} event:

Some outdoor moderate PM_{2.5} events lead to elevated concentrations in schools

Moderate Outdoor PM_{2.5} events

Outdoor Moderate PM_{2.5} event:

AURN 24-hour mean $PM_{2.5}$ concentration > 9.6 µg/m³

Fewer moderate $PM_{2.5}$ events occur on school days On only four days SAMHE $PM_{2.5}$ concentration > threshold

Potential implications of PM_{2.5} in schools

Estimating the potential dose of $PM_{2.5}$ received over the academic year

Potential dose (μg) = $\int Q C dt$

Potential implications of PM_{2.5} in schools

Estimating the potential dose of $PM_{2.5}$ received over the academic year

Potential dose (µg) = $\int Q C dt$

Potential implications of PM_{2.5} in schools

Estimating the potential dose of $PM_{2.5}$ received

Potential dose (µg) = $\int Q C dt$

Conclusions

- Classroom $PM_{2.5}$ concentrations closely linked to outdoor $PM_{2.5}$ concentrations
- Outdoor air is a significant source of PM_{2.5}
- Whilst long-term exposure is predominantly due to low concentration days, 'outdoor PM_{2.5} events' contribute significantly

IMPERIAL a.handy23@imperial.ac.uk

I/O ratio

Time resolution

Events

Gridded frequency

Clustered back trajectories